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Quantum modelling of reactions in solution : an overview of the

dielectric continuum methodology

THANH N. TRUONG

Henry Eyring Center for Theoretical Chemistry, Department of Chemistry,

University of Utah, Salt Lake City, Utah 84112, USA

In this review, we report on the status and perspectives for theoretical modelling
of solvent eŒects on reactions in solution using quantum-mechanical methods

coupled with the dielectric continuum solvation methodology. The simplicity of the

dielectric continuum approach allows inclusion of solvent eŒects directly into the
solute Hamiltonian. Thus, it provides a practical tool for optimizing transition

state structures and following reaction paths of reactions in solution in a rather

routine manner as for gas-phase systems. Several diŒerent types of reaction are
examined in more details to illustrate the advantages and disadvantages, accuracy

and applicability of the continuum models employed.

1. Introduction

Since the beginning of this decade, there have been signi® cant eŒorts devoted

towards the development of methodology in quantum chemistry for understanding

solvent eŒects. Considerable progress has been achieved although many challenges

still remain. In this review, I shall particularly focus on developments of the dielectric

continuum approach. Several excellent reviews have been published recently in this

subject with attention given to the accuracy of diŒerent continuum models in

calculating the free energy of solvation, equilibrium and spectroscopic properties of

molecules in solution [1 ± 3]. The present paper oŒers a diŒerent view and focuses on an

area that has not been emphasized in previous reviews. Speci® cally, the emphasis of

this review is not on the theoretical models but on interesting and important chemical

properties, namely solvent eŒects on the transition states and free-energy pro® les of

reactions in solution while asking several questions as follows. Is the dielectric

continuum approach an appropriate methodology? W hat are its advantages and

disadvantages compared with other existing methodologies? Is the dielectric con-

tinuum methodology at the stage where an accurate transition state and free-energy

pro ® le can be calculated as routinely as for the gas-phase systems ?

Transition states and free-energy pro® les are important for elucidating mechanisms

of reactions in solution and are the starting point for addressing their dynamics.

Despite their importance, modelling these properties for reactions in solution has been

a challenge in quantum chemistry. The challenge arises from the two requirements that

adequate theoretical models must have an accurate description of both the variation

in the electronic structure of the system as it proceeds from the reactants to products

and the solvent± solute interactions. The ® rst requirement demands accurate correlated

level of ab initio molecular orbital (MO) or non-local density functional theory (DFT).

For solvent± solute interactions, several reasonably accurate models exist in the

literature. Generally these models can be classi ® ed into two groups : one treats the

solvent explicitly, and the other implicitly. I provide here a brief overview of diŒerent

models and proceed directly to a discussion of how they are employed in studying

reaction mechanisms.
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526 T. N . Truong

2. Solvation models

Within the explicit treatment approach, there are two general methodologies. The

supermolecule model [4] treats a small number of ® rst-solvation-shell solvent

molecules explicitly at the same quantum-mechanical (QM ) level as the solute. This

model oŒers a straightforward and accurate way to account for the localized portion

of the solvent± solute interactions. In applications, it is the method of choice for

studying bifunctionalproperties of polar solvents and microsolvation. For instance, in

water-assisted tautomerization or proton transfer processes, solvent waters can

directly participate in the chemical reaction [5, 6]. Such waters much be treated

quantum-mechanically. In microsolvation, studying hydrated clusters often provides

essential microscopic features of solvent eŒects on chemical reactions [7 ± 10]. A major

drawback is that this model cannot include the long-range electrostatic interactions

with the bulk solvent. With recent advances in computer technology, quantum

simulations of equilibrium properties of condensed-phase systems with inclusion of

long-range solvent ± solute interactions is now possible with the use of the Car±

Parrinello approach [11± 13]. However, such calculations are still computationally

expensive. A common methodology is to construct an approximate solvent± solute

interaction potential for use in simulations of condensed-phase properties. The

simplest form of such a potential is the use of classical molecular mechanics (MM )

force ® elds [14]. W ith increasing complexity and accuracy, the empirical valence bond

method [15], the combined QM ± M M method [16± 19] and the eŒective fragment

method [20] allow for a small but important part of the system such as solutes to be

treated quantum-mechanically while the remaining is represented classically. Finally,

the frozen (or embedded) DFT [21, 22] treats solvent molecules as frozen density

objects. This is perhaps the closest approximation to the full QM treatment. Long-

range interactions with the bulk solvent can be included by using the periodic

boundary condition with a su� ciently large unit cell. For thermodynamic condensed-

phase properties, large molecular dynamics (MD) or M onte Carlo (MC) simulations

can be carried out to sample over both solute and solvent con ® guration space.

Alternatively, a less computationally demanding integral equation approach such as

the extended reference interaction site method (RISM ) [23, 24] can be used.

There are several methodologies for implicit treatment of the solvent, such as

Langevin dipole and dielectric continuum models. Among these existing solvent

models, the dielectric continuum approach oŒers the simplest and yet reasonably

accurate methodology. We shall limit our discussion of the implicit treatment of

solvent to the dielectric continuum approach while referring readers elsewhere [25] for

a detailed discussion of other models. In the dielectric continuum approach, the

solvated system is modelled as the solute (if necessary, with inclusion of several ® rst-

solvation-shell solvent molecules) inside a cavity surrounded by a dielectric continuum

medium represented by the dielectric constant e . M ost eŒorts in calculating

solvent ± solute interactions so far have been focused on the electrostatic nature which

is the major contribution in polar solvents. M ore attention is now turning toward the

non-electrostatic terms such as dispersion, repulsion and cavitation since they are

becoming more important as the solvent polarity decreases. For electrostatic

interactions, several methodologies exist such as the multipole expansion, image

charge, apparent surface charge approaches or the ® nite-diŒerence Poisson ±

Boltzmann method (see the review by Tomasi and Persico [2] for more details). Earlier

solvation models require the cavity to have spherical or ellipsoidal shape while more

recent ones can treat arbitrary shape cavities. It has been known that models based on
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Quantum modelling of reactions in solution 527

molecular-shape cavities can lead to more accurate descriptions of the solvent± solute

interactions. Several such models exist and have shown some promise for studying

reactions in solution due to the availability of analytical free-energy derivatives. They

are the polarizable continuum model (PCM ) [2, 26± 29], the reaction ® eld factors

formalism [30, 31], which is based on the Kirkwood multipole expansion model [32],

the Poisson ± Boltzmann method [33, 34], the conductor-like screening model

(COSM O) method [35] implemented at the DFT [36] or ab initio M O theory [37] and

its generalization, the generalized conductor-like screening model (GCOSM O) [38,

39]. Several reviews [1 ± 3] have provided excellent discussions and analyses of these

methodologies.

3. Challenges in modelling transition states and reaction pro® les in solution

For reaction in the gas phase, there is a simple and straightforward procedure for

calculating the transition-state structure and reaction path. First, one searches for the

transition state which is a local saddle point on the potential energy surface. One then

performs a normal mode analysis to verify whether it is the correct transition state by

having only one imaginary frequency whose eigenvector corresponds to the direction

of the reaction. Subsequently, one can determine the minimum-energy path by

following the steepest-descent path that connects the transition state to the reactants

and products to provide additional information on structural variations along the

reaction coordinate and the shape of the potential curve. To elucidate the reaction

mechanism, it is often su� cient to have only structural, energy and frequency

information at the stationary points, that is reactants, transition state and products.

In solution, there is no such straightforward recipe. The procedure depends on how

one models the solvent. For the explicit solvent treatment, the large number of solvent

degrees of freedom prevents one from uniquely de® ning the transition state, the

minimum-energy path (MEP) and thus the reaction coordinate. This is perhaps the

greatest challenge for the explicit solvent methodology. Consequently, this approach

mostly relies on the gas phase or a simple user-de® ned reaction coordinate.

Hence, participation of solvent motions in the reaction coordinate is ignored.

Such practice works reasonably well for many simple reactions. For complex reactions

where competing reaction paths exist and where solvent eŒects drastically change the

topology of the free-energy surface, one is required to examine all possible free-energy

pathways but this would be too costly. Since the transition state is not well de® ned

within this approach, to elucidate the reaction mechanism one is required to determine

the whole potential of mean force along the reaction coordinate using a standard

statistical mechanics technique such as the thermodynamic integration or free-energy

perturbation method. However, such calculations require a large number of free-

energy simulations, typically around 30± 60 runs. This is not only a tedious task but

also quite time consuming and computationally expensive. The extended RISM

provides a more e� cient tool to obtain the free-energy pro® les by solving for radial

distribution functions [40]. However, it relinquishes most of the detailed microscopic

structural information.

The dielectric continuum approach, however, does not have the above di� culties

since solvent eŒects are eŒectively included in the solute Hamiltonian and do not

increase the dimensionality of the system. The `eŒective ’ transition state and minimum

free-energy path (MFEP) can be uniquely de ® ned similar to those of the gas-phase

system. Furthermore, availability of analytical free-energy derivatives greatly
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528 T. N . Truong

enhances the ability to explore the free-energy surface and to characterize stationary

points. These advantages, of course, do not come without a cost. This approach

forfeits detailed solvent structure for computational simplicity. Furthermore, the

uncertainty in speci® cation of the location of the boundary between atomistic and

continuum descriptions of the system reduces the con ® dence level on the accuracy of

the calculated results. It is also worth noting that, since a solvent is treated as a uniform

dielectric medium, this approach does not include speci® c hydrogen bond eŒects. In

principle, one can account for these eŒects by including several important ® rst-

solvation-shell solvent molecules in the cavity. However, in this case statistical

averaging over all explicit solvent degrees of freedom is required in order to calculate

thermodynamic quantities.

Finally, it is possible to combine the advantages of both explicit and implicit

solvent approaches. Lim and Jorgensen [41] recently proposed such a combined

approach where dielectric continuum models are used to determine transition-state

structures in solution, and then M C free-energy perturbation simulations are

employed to provide accurate changes in the activation energy upon transferring to

diŒerent solvents and detailed solvent structural information.

4. Progress in applications

The dielectric continuum methodology has been employed in theoretical studies of

solvent eŒects on mechanisms of various reactions, such as S
N

2 charge transfer

[42± 53], proton transfer [10, 54± 58], cycloaddition [41, 59± 74], nuclear addition [6,

75± 80], Diels± A lder [81± 88], rearrangement [89± 96] and isomerization [92, 97± 102]

reactions. From a theoretical point of view, these studies share two general features.

First, most of them have employed the self-consistent reaction ® eld (SCRF) model

[103] using a simple (spherical or ellipsoidal) cavity. Second, many involved only

geometry optimizations of stationary points. Free-energy pro® les were not calculated.

Several studies have estimated the MFEP either from the reduced two-dimensional

(2D) free-energy surfaces, or by adding solvation free energies to the potential energy

along the gas-phase M EP or along a user-de® ned reaction coordinate. Below I

provide an overview on the progress on applications of the dielectric continuum

approach to elucidate reaction mechanisms. However, I shall limit the discussion to

several particular types of reaction that have attracted numerous theoretical studies

owing to their interesting and signi® cant solvent eŒects, namely the S
N

2 charge-

transfer, the polar cycloaddition, the Diels± Alder and the Claisen rearrangement

reactions.

4.1. S
N

2 charge-transfer reactions

There are two types of S
N

2 reaction. Type I reactions are charge-transfer processes,

such as the symmetric charge-transfer Cl Õ 1 CH
$
Cl reaction while type II reactions are

charge separation processes such as the M enshutkin NH
$

1 CH
$
Cl ! H

$
NCH+

$
1 Cl Õ

reaction. Type I S
N

2 reactions have been widely studied both theoretically and

experimentally owing to their important role in physical organic chemistry and to their

large solvent eŒects [104± 108]. For instance, for the Cl Õ 1 CH
$
Cl reaction, aqueous

solvent eŒects signi® cantly decrease the reaction rate by 20 orders of magnitude owing

to charge delocalization which leads to a decrease in the free energy of solvation at the

transition state relative to the separated products. Although the reaction pro ® le of the

S
N

2 reaction has a double-well form in the gas phase [109], it is believed to be unimodal

in an aqueous environment [110]. Such important diŒerences in the reaction pro® les in
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Quantum modelling of reactions in solution 529

the vacuo and in solution were reproduced ® rst by M C simulations [111], and then by

M D simulations using diŒerent solvent± solute interaction models [112± 115], and

extended RISM integral equation [40] calculations with equal success. Ab initio studies

[7, 8, 116] on hydrated clusters provided only qualitative features of the solvent eŒects.

The accuracy of diŒerent dielectric continuum models in calculations of the reaction

pro ® le for this reaction was ® rst examined by Alema! n et al. [46]. These workers

pointed out the advantages of the PCM model. Similar results were also obtained with

more recent generalized Born [47, 48, 51] and GCOSMO [52] models. It is important

to point out that, in previous GCOSM O calculations, the calculated gas-phase barrier

is in excellent agreement with experimental derived data ; however, the calculated free

energy of activation for the reaction in water is underestimated by 7 kcal mol Õ "

compared with the experimental data of about 26 kcal mol Õ " . This error was attributed

to the uncertainty in the cavity size. As discussed in more detail below, it is actually due

to omitting the contribution from the solute internal degrees of freedom.

The type II S
N

S reactions diŒer from the type I S
N

2 charge-transfer reactions, such

as Cl Õ 1 CH
$
Cl ! ClCH

$
1 Cl Õ , in several aspects. First, the rate of the Menshutkin

reaction has been found to increase dramatically with increasing solvent polarity

instead of decreasing as in type I S
N

2 reactions. Thus, polar solvents favour the charge

separation process and stabilize the transition state. Second, the Cl Õ 1 CH
$
Cl !

ClCH
$

1 Cl Õ reaction is symmetric ; thus one expects very little solvent eŒect on the

transition-state structure. In contrast, the Menshutkin reaction such as the

NH
$

1 CH
$
Cl ! H

$
NCH+

$
1 Cl Õ reaction is an asymmetric charge seperation process

with an endothermicity of 110 kcal mol Õ " in the gas phase but it is exothermic by about

34 ‰10 kcal mol Õ " in aqueous solution owing to the stabilization of the H
$
CNH+

$
and

Cl Õ ions by the solvent [117]. According to the Hammond postulate [118], solvent

eŒects would shift the transition state towards the reactant channel ; thus the solvent

has a direct participation in the reaction coordinate. This role of the solvent challenges

the validity of the static equilibrium solvation treatment which assumes the solvent to

be in equilibrium with the chemical system at each point along the gas-phase reaction

coordinate. For this reason, this reaction provides a much more challenging test to any

solvation theory attempting to model solvent eŒects on transition state structure and

reaction pro® le. Gao and Xia [117] have performed elaborate MC simulations using

an AM 1± MM potential to map out a 2D free-energy surface for this reaction. The

transition-state structure and the M FEP were then estimated from this 2D surface.

Although these workers used a rather approximate AM1 Hamiltonian for the solute,

their QM ± M M description of solvent± solute interactions was quite accurate and the

AM1 barrier height happened to agree well with the free energy of activation for the

gas-phase reaction. They found a signi® cant shift of the transition state towards the

reactant channel and the free energy of activation to be 26.3 kcal mol Õ " [117]. PCM

dielectric continuum calculations done by Sola’ et al. [119] for the NH
$

1 CH
$
Br

reaction in water yielded an activation energy of only 8.3 kcal mol Õ " . This value

appears to be too low. This is mainly due to not including the contribution from the

solute internal motions as discussed below. For the NH
$

1 CH
$
Cl reaction, this

contribution increases the free energy of activation by 13.1 kcal mol Õ " . Using the

reaction ® eld factor continuum model, Dillet et al. [49] were able to optimize fully the

transition state in solution and provided more detailed discussion on solvent eŒects on

the transition-state structure. Full determination of the M FEP was done more recently

with the use of the GCOSMO model [53]. Results from both models show excellent

agreement with those from MC simulations. The agreement between results from
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530 T. N . Truong

GCOSM O and reaction ® eld factor calculations and AM 1± MM simulations leads to

an important conclusion that the electrostatic solvent± solute interaction makes the

major contribution to the transition-state stabilization in type II S
N

2 reactions and not

the speci® c hydrogen bond interaction (as inferred by Gao and Xia).

4.2. Cycloaddition reactions

[2 1 2] cycloaddition reactions are useful synthetic routes to formation of four-

membered rings. From the W oodward± HoŒmann rules, the [2 1 2] reactions are

thermally allowed via a supra-antara transition state. These reactions are often

classi ® ed into two classes, namely non-polar or polar cycloadditions, having rather

diŒerent mechanisms. Stereochemical and kinetic data indicate that non-polar

cycloadditions proceed via a two-step biradical mechanism with rather a large

activation energy. On the contrary, polar cycloadditions in solution have much lower

activation energies and were suggested to have a two-step mechanism with a

zwitterionic intermediate [120, 121]. Dielectric continuum models have been used to

investigate roles of solvents on the mechanisms of various polar cycloaddition

reactions [41, 59± 74]. Generally, polar solvents were found to stabilize the zwitterionic

intermediate and consequently to alter the mechanism from a concerted process in the

gas phase to a stepwise process in solution via a stable zwitterionic intermediate. This

is qualitatively in accord with experimental observations. However, the magnitude of

solvent eŒects on the free energy of activation was rather overestimated in a recent

detailed analysis by Lim and Jorgensen [41] in comparisons with experimental data.

For instance, the SCRF model and the PCM based on isodensity surface cavity

calculations predict that the solvent eŒects lower the activation energy of the

cycloaddition of 1,1-dicyanoethylene and methyl vinyl ether by 10± 13 kcal mol Õ " on

going from CCl
%

to CH
$
CN while the observed value is about 5 kcal mol Õ " . Lim and

Jorgensen have also performed elaborate M C simulations using the free-energy

perturbation theory with an accurate force ® eld that includes solute polarization

eŒects and found much larger solvent eŒects of 18± 20 kcal mol Õ " on the activation

energy. However, in our study [122] of the [2 1 2] cycloaddition of ketene and imine,

the GCOSM O model predicts that the solvent lowers the activation energy by

4.5 kcal mol Õ " on going from vacuum to water ( e = 78.4) while previous SCRF

calculations [59, 60, 70] yield a value of 8.2 kcal mol Õ " going from vacuum to CH
$
CN

( e = 37.5). GCOSMO results, however, for diŒerent reactants fall within the range of

experimental ® ndings, thus supporting the use of a more accurate cavity rep-

resentation.

4.3. Diels± Alder reactions

Solvent eŒects on Diels± A lder reactions have become an important topic for

theoretical investigations owing to the observed signi® cant rate enhancement with the

use of aqueous solvent [123]. Furthermore, the endo ± exo and diastereofacial

selectivities were found to correlate well with solvent polarities, indicating that

electrostatic solvent eŒects are important [82]. On the other hand, para± meta

regioselectivities, diastereofacial selectivities and rate variation correlate well with

hydrogen bond donor ability of the solvent [82].

Previous results from M C simulations [124] indicated that the rate accelation in

water results mainly from hydrophobic and hydrogen bonding eŒects. Thus, in order

to model correctly the solvent eŒects in Diels± Alder reactions, solvation models must

include not only electrostatic but also solvophobic and hydrogen bond eŒect

contributions. QM studies to date provide only qualitative trends. In fact, SCRF

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Quantum modelling of reactions in solution 531

calculations [81± 83, 85, 86] show that electrostatic solvent eŒects slightly increase the

activation barriers, that is in the opposite direction from experimental observation.

Despite this fact, this simple continuum model was able to reproduce experimental

trends on the endo± exo, para± meta and diastereofacial selectivities as functions of

solvent polarity. These studies [81± 83, 85, 86] also showed large eŒects on the

geometry of the transition state and on the reaction path due to solvent polarization.

In particular, an aqueous solvent promotes asynchronicity in the reaction coordinate,

thus supporting the need for inclusion of solvent eŒects in the determination of the

reaction path. Using the semiempirical generalized Born AM 1± SM 2 solvation model,

the correct experimental trend was obtained ; however, the calculated rate acceleration

factor is smaller than results from MC simulations [125]. Since the SM2 solvation

model [126] includes hydrophobic and speci® c hydrogen bonding eŒects, one can

expect that it performs better than the SCRF model on the rate enhancement

factor.

Supermolecule calculations [83] have also been carried out for a series of

Diels± A lder reactions and found that they can account for the in¯ uence of hydrogen

bond eŒects on endo ± exo selectivities and activation energy experimentally observed.

However, results on the para± meta regioselectivities for hydrated clusters are almost

the same as for isolated molecules. This is not consistent with the experimental

observation that, for strong hydrogen bonding donor solvents, such as ¯ uorinated

alcohols, the para-to-meta ratios signi® cantly increase. However, such increases were

not observed for reactions in water± alcohol mixtures. The supermolecule results were

attributed to the inability of water to model strong hydrogen bond eŒects in

¯ uorinated alcohols.

4.4. Claisen rearrangement reactions

The Claisen rearrangement, that is the thermally induced 3,3-sigmatropic shift of

allyl vinyl eithers to c , d -unsaturated carbonyl compounds, has received much

attention both experimentally and theoretically [127]. This is an important reaction in

synthetic organic chemistry and has been used as a prototype in modelling the

mechanism of the biosynthesis of phenylalanine. Similar to the Diels± A lder reactions,

the Claisen rearrangement was found experimentally to have a signi® cant rate

acceleration going from non-polar to polar solvents, and in particular a 214-fold

increase from cyclohexane to aqueous solution, corresponding to a 3.2 kcal mol Õ "

decrease in the activation energy. This may ® rst suggest that solvent polarization is

responsible for such rate enhancement. However, the observed sevenfold increase in

the rate in water relative to that in 2,2,2-tri¯ uoroethanol (TFE) solvent does not

support the importance of solvent dielectric eŒects since both water and TFE solvents

have similar dielectric constants [127]. These later results suggest that speci® c hydrogen

bonding eŒects are the major factor since TFE is a better hydrogen bond donor than

water. This, however, contradicts the observed lack of a correlation between the rate

eŒects with the acid dissociation constants of solvents [128]. For example, aqueous

ethanol promotes the reaction to the same extent as phenol while the rate in octanoic

acid is a factor of 2.8 times slower than in p-chlorophenol. Thus, speci® c hydrogen

bond eŒects alone cannot explain the overall solvent eŒects in this reaction. This leads

to the suggestion that hydrophobic eŒects also play a non-negligible role. Fur-

thermore, the secondary deuterium kinetic isotope eŒects were found to be unaŒected

by the solvent polarity, indicating a little change on the transition-state structure

for the reaction going from non-polar solvent to aqueous solution [127].
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532 T. N . Truong

Theoretical studies [93± 95, 129± 132] to date are not conclusive on what com-

ponents of the solvent± solute interactions govern the observed rate acceleration. Early

M C simulations by Severance and Jorgensen [131] using an M M force ® eld led to the

conclusion that the increase in the hydrogen bonding at the transition state relative to

the reactant is responsible for the calculated decrease in activation energy of

3.85 kcal mol Õ " for the reaction in water compared with the gas phase. Including

solute polarization in an AM 1± MM potential for MC simulations, Sehgal et al. [130]

concluded that a charge increase on the oxygen atom is the main factor in the rate

acceleration corresponding to a decrease in the activation energy of 3.5 kcal mol Õ " at

25 ÊC. SCRF calculations [93], which account only for the electrostatic component of

the solvent ± solute interaction, predict either a lowering of only 1.2 kcal mol Õ " , or an

increase of 1.1 kcal mol Õ " in the activation energy depending on the method of

including correlation eŒects, DFT or M P2 respectively. Using the SCRF, PCM and

supermolecule models at diŒerent levels of theory, Davidson et al. [94, 95] found that

the PCM, which includes dispersion, repulsion and cavitation contributions, yields a

barrier lowering in water of 2.8 kcal mol Õ " . The SCRF model yields a value of

0.7 kcal mol Õ " , and the supermolecule approach with two explicit water molecules

yields 5.2 kcal mol Õ " . The latest non-local B3LYP DFT calculations [129] using the

discrete-continuum approach, which models the system as the solute and two explicit

solvent water molecules near the solute oxygen atom in a molecule-shaped cavity

immersed in a dielectric medium, predict a decrease in the activation energy of

6.3 kcal mol Õ " . Results from this model suggested that charge transfer to the ® rst-

solvation-shell solvent is an important factor for the rate acceleration. W ith the

AM1± SM 2 generalized Born continuum model, Storer et al. [132] concluded that

electrostatic polarization and ® rst-hydration-shell hydrophobic eŒects are the main

factors accounting for the decrease of 4.3 kcal mol Õ " in the activation energy. The

results also indicated that hydrophobic packing eŒects are unimportant.

From the latest study by Guest et al. [129], solvent polarization described by the

SCRF model and PCM were found to have large eŒects on the transition-state

structure, that is both predict increased bond breaking and reduced bond formation

upon hydration (increases in the bond distance of both the breaking and the forming

bonds). Supermolecule calculations predict even larger eŒects. Finally, none of the

solvation models predicts changes in the kinetic isotope eŒects upon going from non-

polar to polar solvent in agreement with experimental observations.

5. Recent developments

Recently, a new methodology for calculating the M FEP using the dielectric

continuum approach has been proposed [53]. This methodology provides a routine

procedure for quantitative ab initio calculations of free energies of activation of

reactions in solution. An overview of this general methodology is given below. This

methodology can be used with any dielectric continuum model which has analytical

free-energy derivatives. Two well studied examples are presented to illustrate the usage

of this methodology. Since these illustrative examples use the GCOSMO model, the

description of this model is also given.

5.1. General methodology

Let us consider an A ! B reaction. The standard free energies of reaction in the gas

phase and in solution are denoted as D G !
g

and D G !
s

respectively. Associated with the
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Quantum modelling of reactions in solution 533

reactant A and product B are free energies of solvation denoted as D G !
solv

. From the

thermodynamic cycle given by

A (g)

A (s)

B (g)

B (s)

D G 0
solv (A) D G 0

solv (B)

D G 0
g(A ! B)

D G 0
s (A ! B)

the standard free energy of the reaction in solution can be written as

D G !
s

= D G !
g

1 [ D G !
solv

(B) –D G !
solv

(A)], (1)

where the gas-phase free energy is given by

D G !
g

= D E –RT ln 0 QB

QA 1 . (2)

Here D E is the reaction energy ; R is the Boltzmann constant ; T is the temperature ; QA

and QB are the total partition functions evaluated with the zero of energy set at the

bottom of each respective potential well.

This expression can be generalized for the free-energy pro® le of reaction in

solution. In particular, the standard free energy at a point R(s) along the reaction

coordinate s relative to that of the reactant A is expressed as

D G !
s
(s) = D G !

s
(A ! R (s)) = V

MEP
(s) –RT ln 0 Q(R (s))

QA 1 1 D G !
solv

(R (s)) –D G !
solv

(A),

(3)

where V
MEP

(s) is the gas-phase potential energy along the reaction coordinate s with

the zero of energy set at the reactant. Equation (3) indicates that, in order to obtain an

accurate free energy pro® le for reaction in solution, one requires not only an accurate free

energy of solvation but also an accurate gas-phase free-energy pro® le. In calculations of

free energies of activation of many reactions in solution, most previous studies have

focused mostly on the solvation free-energy contributions and often overlooked errors

in the calculated gas-phase free-energy pro ® le.

The central issue here is how to de® ne the reaction coordinate s. Adopting the

reaction path Hamiltonian formalism, the reaction coordinate s for reactions in

solution is de® ned as the distance along the minimum-free-energy path on the free-

energy surface. However, following the reaction path on the solution-phase free-

energy surface, as de ® ned in equation (3), is almost an impossible task. The major

di� culty arises from the necessity to perform normal mode analysis at every point on

the gas-phase potential surface in order to calculate vibrational partition functions. To

circumvent this problem, an assumption is made that the gas-phase Born±

Oppenheimer potential energy surface E(R ) has similar topology to the gas-phase free-

energy surface along the reaction coordinate. In this case, a pseudo-free-energy surface

G*(R ) in the solute nuclear coordinates R is related to E(R ) by the following

expression :

G*(R ) = E(R ) 1 D G !
solv

(R ). (4)
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534 T. N . Truong

The pseudo-free-energy surface de® ned above allows one to utilize advanced

computational methods that have been well developed for following reaction paths in

the gas phase. Analogous to the gas phase, the reaction coordinate s in solution is

de® ned as the distance along the MFEP which is the steepest-descent path from the

transition state towards both the reactant(s) and the product(s) on the pseudo-free-

energy surface G*(R ). To obtain the free-energy pro® le of reaction in solution the gas-

phase –RT ln (Q(s) } QA) term is added to the pseudo-free-energy pro® le D G*(s). In

summary, the procedure for calculating free-energy pro® les of reaction in solution

involves three steps.

(1) Select the appropriate level of theory and basis set that can give an accurate

gas-phase free energy surface.

(2) Determine the transition state and calculate the M FEP on the solution pseudo-

free-energy surface de ® ned above.

(3) Add contributions from the gas-phase solute internal degrees of freedom along

this M FEP. These contributions were mistakenly omitted in previous dielectric

continuum calculations of free energies of activation including our own ® rst

study of solvent eŒects on the reaction pro® le of the S
N

2 Cl Õ 1 CH
$
Cl reaction

[58].

Within the dielectric continuum solvation methodology, the free energy of

solvation can be written as

D G !
solv

(R ) = D G
el

(R ) 1 D G
dis

(R ) 1 D G
rep

(R ) 1 D G
cav

(R ), (5)

where D G
el

constitutes solvation terms of electrostatic nature, D G
dis

and D G
rep

are the

solvent ± solute dispersion and repulsion interactions respectively, and D G
cav

is the

work required to create the cavity. Note that contributions from the solute internal

motions, such as shifts in the solute vibrational frequencies, are eŒectively included by

® tting the cavity size to experimental free energies of hydration. There exist diŒerent

methods for calculating each of these terms. Below I present one particular

combination that was used in applications presented here and also has been working

well in many of our studies.

5.2. Generalized conductor-like screening model

The GCOSM O model [38, 39, 52, 53, 58, 133, 134] is an ab initio generalization of

the COSMO approach, which was ® rst proposed by Klamt and Schu$ u$ rmann and

originally implemented at the semiempirical M O level [35]. This methodology is based

on a fundamental classical electrostatic theory which states that the electrostatic

potential on the boundary surface of a cavity in a conductor as well as inside the

conductor is zero. Thus, the surface charges r (r) on the surface S of the cavity in a

screening conductor (the dielectric constant e = ¢ ) can be determined from such a

boundary condition:

3
i

z i

r r –R i r
–&

V

q (r´)
r r –r ŕ

d $ r´ 1 &
S

r (r´)
r r –r ŕ

d # r´ = 0, (6)

where r is on S, q is the solute electron density, and z i and R i are the nuclear charge

and position vector of atom i. For a dielectric medium speci® ed by the dielectric

constant e , the surface charges are then determined approximately by uniformly

scaling the screening conductor surface charge r by a factor of f( e ) = ( e –1) } e to satisfy

Gauss’ theorem. Note that for water ( e = 78.4), this scaling factor is 0.987, that infers
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Quantum modelling of reactions in solution 535

water is behaving 99 % like a perfect conductor. Thus, this approximation is not too

unreasonable for polar solvents. In fact, in comparison with the exact Poisson’ s

boundary condition used in the PCM , the average unsigned diŒerences in hydration

free energies between two models are less than 0.2 kcal mol Õ " for neutral solutes and

less than 0.9 kcal mol Õ " for ions [133].

Within the boundary element approach, the cavity boundary is de® ned by M

surface elements with areas {S
u
}. The surface charge density at each surface element is

approximated as a point charge {q
u
}, located at the centre {t

u
} of that element. From

the above boundary condition, the total electrostatic solvation free energy is given by

D G
els

(q) = z ‹ B ‹ q 1 c ‹ q 1
1

2f( e )
q ‹ Aq, (7)

where

q = – f( e )A Õ " (Bz 1 c), (8)

is the vector of surface charges, A , B and c are M 3 M , M 3 N and M 3 1 matrices

respectively with matrix elements de® ned by

A
uv

=
1

r t
u

–t
v
r
for u 1 v, and A

uu
= 1.07 0 4 p

S
u
1 " / #

(9)

B
ui =

1

r t
u

–R i r ´
(10)

c
u

= 3
l m

Pl m Lu
l m
!

(11)

where

Lu
l m = – - l ) 1

r –t
u
) m . , (12)

with Pl m the density matrix element, and l and m basis functions. The dagger denotes

matrix transposition. This electrostatic contribution to the free energy of solvation can

be incorporated directly into the Fock matrix elements and can be solved simu-

ltaneously within a single self-consistent ® eld (SCF) step for both the solute

wavefunction and the surface charges. The pseudo-free energy of the whole system

(solute 1 surface charges) is then given by

G* = 3
l m

Pl m [(H !
l m 1 H s

l m ) 1 "
#
(G !

l m 1 G s
l m )] (13)

–"
#

f ( e ) z ‹ B ‹ A Õ " Bz 1 E
nn

1 G
non- els

,

where E
nn

is the solute nuclear repulsion and z is the vector of N nuclear charges. The

solvent contributions to the one- and two-electron terms of the Fock matrix (H l m and

G l m respectively) are expressed as

H s
l m = – f ( e ) z ‹ B ‹ A Õ " L l m , (14)

G s
l m = – f( e ) c ‹ A Õ " L l m . (15)

For the dispersion and short-range repulsion contributions, we adopted the

method of Floris et al. [135] :

D G
dis

= q
H # O

3
N

i

3
M

u

2d iH
1 di O

3r ’
iu

(r
iu

[ n
u
) S

u
, (16)
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536 T. N . Truong

D G
rep

= – q
H # O

3
N

i

3
M

u

2c iH
1 c iO

9r " #
iu

(r
iu

[ n
u
) S

u
, (17)

where q
H # O

is the density number of water, d iH
, c iH

and di O
, c iO

are dispersion and

repulsion coe� cients for interactions of the solute atom i with the solvent hydrogen

and oxygen atoms respectively. These coe� cients can be taken from available MM

force ® elds, and we found that the OPLS force ® eld [136] works well in most cases ; n
u

is the unit vector normal to the surface at the point t
u

and directed inside the cavity ;

r
iu

is the (t
u

–R
i
) vector. The cavity size [137] in this case was increased to account

for the solvent excluding region by adding 1.29 A/ (our optimized radius of solvent

water) to the solute atomic radii.

The cavity formation term is the work required to create the cavity in the solvent.

Here we employed the scaled particle ¯ uid theory of Pierotti [138], which was

transformed by Huron and Claverie [139] into an atom± molecule-type formalism. In

particular, D G
cav

is given by

D G
cav

= 3
N

i = "

(K
!

1 K
"

a i s
1 K

#
a #

i s
1 K

$
a $

i s
)
Sexposed

i

S i

, (18)

where K i (i = 0± 3) are functions of the temperature, pressure, density and hardsphere

diameter of the solvent taken from the work of Huron and Claverie [139]. a
is

is the

atomic radius of atom i plus 1.4 A/ , the radius of the water molecule. Sexposed
i } S i is the

fraction of the exposed surface of the solute atom i. These methods for calculating

non-electrostatic contributions have been found to be su� ciently accurate from

several previous studies [38, 135, 140± 145].

5.2.1. Analytical derivatives

The pseudo-free energy given above in equation (13) can be rewritten as

G* = 3
l m

Pl m (H !
l m 1 "

#
G !

l m ) 1 E
nn

1 D G
el

1 D G
non- els

, (19)

where H !
l m and G !

l m are the solute one- and two-electron components respectively of the

Fock matrix and involve only the solute electron± electron and electron± nuclei

interactions, and D G
el

and D G
non- els

are the electrostatic and non-electrostatic

components respectively of the solvation free energy. Applications of the free-energy.

Applications of the free-energy derivatives so far have included only contributions

from the electrostatic term. Without the non-electrostatic contributions, the derivative

of the free energy in equation (19) with respect to the nuclear coordinates R i of atom

i is given by

¡ R i
(G*) = 3

l m

Pl m ¡ R i
(H !

l m ) 1 "
#
3
l m
k r

Pl m Pk r ¡ R i
( l k s m r )

1 ¡ R i
(E

nn
) –3

l m

Wl m ¡ R i
(S l m )

1 z ‹ ( ¡ R i
B ‹ ) q 1 ( ¡ $R i

c ‹ ) q 1
1

2f
q ‹ ( ¡ R i

A) q. (20)

The ® rst four terms have the same expressions as the Hartree± Fock (HF) or

Kohn± Sham DFT theory for a gas-phase molecule except that the density matrix Pl m

and the energy-weighted density matrix Wl m contain the solvent eŒects. The last
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Quantum modelling of reactions in solution 537

three terms are due to the electrostatic solvation energy. They are from the interactions

of surface charges with solute nuclear charges, with solute electron charge distribution

and with other surface charges respectively. Note that, with the conductor-like

screening boundary condition, terms involving the derivative of the surface charges

are not needed. If the atomic radii used to de® ne the cavity are assumed to be ® xed, and

surface elements stick to the atom to which they belong, then from [35]

¡ R i
(A

uv
) = –

t
u

–t
v

r t
u

–t
v
r $

¡ R i
(t

u
–t

v
) = –

t
u

–t
v

r t
u

–t
v
r $

( h
ui –h

vi ), (21)

with

h
ui =

1

2
3

4

0 for u a sphere of atom i,

1 for u ` sphere of atom i.
(22)

The derivative ¡ R i
(A

uu
) of the diagonal elements of A depends on ¥ S

u
} ¥ R i , that is the

change in the surface area of the element u with respect to the change in the position

of atom i. Thus, only surface elements at the overlapping regions of the atomic sphere

of atom i with the neighbour spheres have non-zero ¥ S
u
} ¥ R i . Numerical analysis

indicated that it is reasonable to assume that

¡ R i
(A

uu
) = 0. (23)

Finally, diŒerentiating B
uj

and c
u

in equations (10) and (11), we obtain

¡ R i
(B

uj
) = –

t
u

–R
j

r t
u

–R
j
r $

¡ R i
(t

u
–R

j
) = –

(t
u

–R
j
)

r t
u

–R
j
r $

( h
ui –d ij

), (24)

¡ $R i
(c

u
) = 3

l m

Pl m - l ) r –t
u

r r –t
u
r $

( –¡ R i
(t

u
)) ) m . = – 3

l m

Pl m - l ) (r –t
u
)

r r –t
u
r $

h
ui ) m . . (25)

The asterisk denotes that equation (25) is not the complete derivative ¡ R i
(c

u
) ; the term

containing the partial derivative of the density matrix, Pl m has already been included in

the fourth term of equation (20).

The second derivative of the pseudo-free energy with respect to the R i and R
j
solute

nuclear coordinates can be obtained by diŒerentiating the ® rst derivative given in

equation (20). The explicit expression has been published elsewhere [39].

The simplicity of the expressions for the contributions of solvent polarization to

the Fock matrix and its derivatives gives the GCOSM O model many computational

advantages. The most signi® cant is that the computational cost for calculations of

energy, gradient and Hessian is no more than 15 % larger than that of the

corresponding gas-phase calculations. Furthermore, in many cases, the external

polarization ® eld localizes the wavefunction and hence reduces the number of SCF

iterations.

5.2.2. Other aspects of the model

5.2.2.1. Outlying charge eŒect. This eŒect arises from the fact that implementation of

any classical continuum solvation model within a QM level will cause a small portion

of the electronic density distribution to be outside the cavity regardless of the cavity

size. Recent studies [146, 147] have proposed several post-SCF correction schemes to

account for this eŒect. In my view, such schemes philosophically attempt to make the

dielectric continuum methodology more rigorous than it should be. Comments below

regarding cavity size further support this view. In addition, these schemes add a layer

of complication when one requires the inclusion of the outlying charge eŒect in free-

energy derivatives for consistency in the determination of the structure and reaction
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538 T. N . Truong

path ; yet the atomic radii used in specifying the cavity size are still needed to be

optimised to account for other eŒects. For these reasons, outlying charge eŒects were

not considered in the GCOSM O model. One positive aspect, however, is that the

proposed schemes remove most of the rather strong basis set dependence on solvation

free energies of anions where the solute wavefunctions are rather diŒuse.

5.2.2.2. Cavity speci® cation. This is perhaps the most controversial aspect of the use

of the dielectric continuum approach. There is no rigorous way to de® ne the cavity

boundary. However, it is generally accepted that the molecule-shaped cavity provides

a more realistic description than a simple spherical or ellipsoidal cavity. The size of

such a cavity is speci ® ed by the atomic radii. These atomic radii have similar

magnitudes to van der Waals atomic radii used in MM force ® elds, although most

have been optimized for a particular solvation model. Furthermore, there are three

diŒerent ways to de ® ne the boundary surface, namely van der W aals (overlapping

spheres), solvent-accessible [137] or solvent-excluding [148] surface. For reactions in

solution, we found that the solvent-excluding surface provides more stable results

owing to its smooth nature. In all applications presented below, the solvent-excluding

surface was used. It was constructed using the GEPOL algorithm [149]. The

atomic radii (N, 1.74 A/ ; C, 2.10 A/ ; H, 1.17 A/ ; Cl, 1.75 A/ ) used have been optimized

at the HF } 6-31G(d) level using the GCOSM O model to reproduce free energies of

hydration for a representative set of small molecules and ions [133]. By optimizing the

atomic radii for determining the cavity, other contributions that were not explicitly

considered in the model are eŒectively included.

5.3. Illustrative examples

5.3.1. S
N

2 Cl Õ 1 CH
$
Cl charge-transfer reaction

The ® rst example is the Cl Õ 1 CH
$
Cl biomolecular nucleophilic substitution (S

N
2)

reaction in the gas phase and aqueous solution. To calculate the free-energy pro® le of

this reaction in aqueous solution, ® rst one needs to determine the level of theory

required for accurate calculations of the gas-phase potential curve. By comparison

with the accurate ab initio MO calculations and available experimental data, the

hybrid density functional theory, particularly the Becke half-and-half exchange and

Lee± Yang± Parr correlation (BH & HLYP) functional method was found to give the

best overall performance among existing DFT methods and can predict accurate

structural, energy and vibrational frequency information not only for equilibrium

structures but also for the transition state with quality comparable with the second-

order M ù ller± Plesset (MP2) level of theory [58]. In particular, the calculated classical

barrier of 2.6 kcal mol Õ " compared favourably with the semiempirical value of

3.1 kcal mol Õ " that was ® tted to the experimental thermal rate constant at the room

temperature. Similarly, the complex binding energy was slightly overestimated to be

–9.9 kcal mol Õ " compared with the experimental data of –8.6 ‰0.2 kcal mol Õ " . In

the second step, one can in principle optimize the transition state in solution and then

determine the M FEP by following the steepest-descent path from the transition state.

However, most previous simulations have used a much simpler reaction coordinate R
C

de® ned by Chandrasekhar et al. [111] as

R
C

= R
CCl ´ –R

CCl
,

where Cl´ is the leaving atom. To facilitate comparisons with results from previous

simulations, the same reaction coordinate was used. As shown in ® gure 1, the
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Quantum modelling of reactions in solution 539

Figure 1. Reaction pro® les of the S
N
2 Cl Õ 1 CH

$
Cl´ reaction in the gas phase (potential

energy) (thin solid curve) and in aqueous solution (pseudo-free energy) (thick solid
curve). The solid curves are from the BH & HLYP± GCOSMO calculations using the 6-

31 1 G(d, p) basis set, and the broken curve is from MC simulations [111]. The

horizontal bar is the free energy of activation with added contribution from the solute
internal degrees of freedom.

unimodal shape of the free-energy curve calculated from the methodology described

above agrees well with that obtained from classical M C simulations. In particular, the

calculated free energy of activation of 27.5 kcal mol Õ " is in good accord with the

previous M C result of 26.3‰0.5 kcal mol Õ " [111], the M D result of 27.7 kcal mol Õ "

[112] and the experimental value of 26.6 kcal mol Õ " . Figure 2 shows individual

contributions, namely electrostatic, dispersion, repulsion and cavitation, to the

hydration free energy along the reaction coordinate. The results con® rm that the non-

electrostatic contribution has only a small eŒect on the free energy of activation [112].

In particular, the overall non-electrostatic contribution, resulting mostly from the

cavity formation term (see ® gure 2), is found to lower the barrier by about 2 kcal mol Õ "

while the electrostatic contribution eŒectively raises the barrier by 19 kcal mol Õ " .

5.3.2. The M enshutkin NH
$

1 CH
$
CL ! H

$
NCH+

$
1 Cl Õ reaction

First of all, to determine an appropriate level of theory for accurate potential and

free energy surfaces, benchmark gas-phase single point fourth-order M oller± Plesser

M P4(SDTQ) calculations at the MP2 optimized geometries at the stationary points

using a large aug-cc-pVDZ [150] basis set were performed. Comparing with this

benchmark result of 32.1 kcal mol Õ " for the classical reaction barrier D V Œ , M P2 } 6-

31G(d, p) calculations overestimate by 6.3 kcal mol Õ " while the BH & HLYP method
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540 T. N . Truong

Figure 2. BH & HLYP } 6-31 1 G(d, p) total hydration energy (Ð Ð ) and its individual

contributions (( ^ ), electrostatic; ( _ ), cavitation; ( D ), dispersion ; ( V ), repulsion)
plotted as functions of the reaction coordinate R

C
of the S

N
2 Cl Õ 1 CH

$
Cl´ reaction. All

contributions are relative to their separated reactant values.

with the same basis set agrees to within 0.5 kcal mol Õ " . W hen comparing the structural,

energy and frequency information, overall the BH & HLYP results are closer to both

M P4 and experiment than are the M P2 result [53]. This is consistent with conclusions

from other studies [5, 151± 153] that the BH & HLYP DFT method was found to be a

computationally e� cient and su� ciently accurate method for calculating transition-

state properties.

Using the GCOSMO dielectric continuum methodology, the transition state of the

M enshutkin NH
$

1 CH
$
Cl % NH

$
CH+

$
1 Cl Õ reaction in an aqueous solution was

fully optimized and the MFEP in all degrees of freedom of the solute was determined

by following the steepest-descent path on the pseudo-free-energy surface de® ned

above and then corrected by adding the contribution from the gas-phase solute

internal degrees of freedom.

In ® gure 3 we plot the CN and CCl bond distances and the HCN angle along both

the gas-phase MEP and solution-phase M FEP. These internal coordinates show the

largest changes as functions of the reaction coordinate. For the reaction in water, they

are shifted in the product direction. This means that solvent eŒects advance the

reaction coordinate. In particular, at the transition state as shown in ® gure 4, solvent

eŒects elongate the CN bond by 0.42 A/ , shorten the CCl bond by 0.30 A/ and reduce

the HCN angle by 14Ê. These shifts are somewhat larger than those obtained from the

reaction ® eld factor method at the HF level [49]. Since electron correlation was found

to be important for the gas-phase transition-state geometry (it shortens the CN bond

by 0.1 A/ ), one expects the solvent eŒects on the structure also to be very diŒerent for
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Quantum modelling of reactions in solution 541

Figure 3. Bond distances NC and CCl and angle HCN as functions of the reaction coordinates
for the Menshutkin NH

$
1 CH

$
Cl reaction in both the gas phase (g) and aqueous solution

(aq). The origin of the reaction coordinate is at the saddle point in each case.

Figure 4. Optimized geometries of the transition state of the Menshutkin NH
$

1 CH
$
Cl

reaction in the gas phase and in aqueous solution (in parentheses). The distances are in
a/ ngstro$ ms and the angle is in degrees. Values in the second rows were calculated at the

HF } 6-31-G** level using the reaction ® eld factor method (taken from [48]).

the HF and DFT results. The large shift in the transition state can be understood from

the fact that the Menshutkin reaction is a charge separation process. Aqueous solvent

facilitates charge separation by gaining a favourable free energy of solvation. These
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Figure 5. Free-energy pro® les along the gas-phase MEP and solution-phase MFEP of the
Menshutkin NH

$
1 CH

$
Cl reaction. The QM ± MM free energy of activation is taken

from [117].

trends are consistent with previous results from the PCM [119] and semiempirical

AM1± M M M C simulations [117].

Free-energy pro ® les in both the gas phase and aqueous solution are also plotted in

® gure 5. For formation of the gas-phase ion products H
$
CNH+

$
and Cl Õ , the reaction

is 110 kcal mol Õ " endothermic. Thus, the dynamical bottleneck is located far in the exit

channel. Solvent eŒects change the reaction energetics to noticeably exothermic, thus

shifting this bottleneck signi® cantly towards the entrance channel and decreasing the

free energy of activation to 24.8 kcal mol Õ " . This free energy of activation agrees well

with the value of 26.3 kcal mol Õ " from the AM1± M M M C simulations of Gao and

Xia, the reaction ® eld factor result of 28.7 kcal mol Õ " [49] and the experimental value

of 23.5 kcal mol Õ " [154] for a similar Menshutkin reaction NH
$

1 CH
$
I in water.

6. Conclusion and future outlook

The simplicity of the dielectric continuum solvation approach provides many

computational advantages for quantum modelling of reactions in solution. The

availability of free-energy derivatives in models based on a molecule-shaped cavity

greatly enhances the ability of these models to explore free-energy surfaces, to

optimize and to characterize transition states. The additional computational cost is

only a fraction of the corresponding gas-phase calculation and is much smaller than

those of M C or M D simulations. For these reasons, condensed-phase quantum

chemistry studies using dielectric continuum methodology are becoming more routine.
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Despite these positive aspects, work remains to be done. In particular, more attention

should be given to the hydrophobic eŒects on the free energy of activation and the

transition-state structure of reaction in solution. For many reactions, such eŒects are

not negligible even in polar solvents. In addition, work has already begun to extend the

dielectric continuum methodology to include non-equilibrium solvation eŒects for

addressing dynamics of reactions in solution.

Acknowledgments

I am grateful to Dr Eugene V. Stefanovich, Thanh-Thai T. Truong and Uyen

Nguyen for their contributions to this work. This work is supported in part by the

National Science Foundation via a Young Investigator Award.

References

[1] C r a m e r , C. J., and T r u h l a r , D. G., 1994, Reviews in Computational Chemistry, edited by

K. B. Lipkowitz and D. B. Boyd (New York : VCH), p. 1.
[2] T o m a s i , J., and P e r s i c o , M., 1994, Chem. Rev., 94, 2027.

[3] C r a m e r , C. J., and T r u h l a r , D. G., 1996, Solvent EŒects and Chemical Reactivity, edited

by O. Tapia and J. Bertra! n (Dordrecht : Kluwer), p. 1.
[4] P u l l m a n , A., and P u l l m a n , B., 1975, Q . Rev. Biophys., 7, 505.

[5] Z h a n g , Q., B e l l , R., and T r u o n g , T. N., 1995, J. phys. Chem ., 99, 592.

[6] S i e g b a h n , P. E. M., 1996, J. phys. Chem., 100, 14672.
[7] H i r a o , K., and K e b a r l e , P., 1989, Can. J. Chem ., 67, 1262.

[8] M o r o k u m a , K., 1982, J. Am . chem . Soc., 104, 3732.

[9] J e n s e n , J. H., and G o r d o n , M. S., 1995, J. Am . chem . Soc., 117, 8159.
[10] C h i p o t , C., G o r b , L. G., and R i v a i l , J. L., 1994, J. phys. Chem ., 98, 1601.

[11] C a r , R., and P a r r i n e l l o , M., 1985, Phys. Rev. Lett., 55, 2471.

[12] L a a s o n e n , K., S p r i k , M., P a r r i n e l l o , M., and C a r , R., 1993, J. chem. Phys., 99, 9080.
[13] F o i s , E. S., S p r i k , M., and P a r r i n e l l o , M., 1994, Chem . Phys. Lett., 223, 411.

[14] J o r g e n s e n , W. L., 1989, Accts Chem . Res., 22, 184.

[15] A q v i s t , J., and W a r s h e l , A., 1993, Chem . Rev., 93, 2523.
[16] G a o , J., 1996, Reviews in Computational Chemistry, edited by K. B. Lipkowitz and D. B.

Boyd (New York : VCH), p. 119.

[17] S i n g h , U. C., and K o l l m a n , P. A., 1986, J. comput. Chem ., 7, 718.
[18] F i e l d , M. J., 1993, Computer Simulation of Biomolecular Systems : Theoretical and

Experimental Applications, edited by W. F. van Gunsteren, P. K. Weiner and A. J.

Wilkinson (Leiden : ESCOM), p. 82.
[19] F i e l d , J. J., B a s h , P. A., and K a r p l u s , M., 1990, J. comput. Chem ., 11, 700.

[20] D a y , P. N., J e n s e n , J. H., G o r d o n , M. S., W e b b , S. P., S t e v e n s , W. J., K r a u s s , M.,

G a r m e r , D., B a s c h , H., and C o h e n , D., 1996, J. chem . Phys., 105, 1968.
[21] S t e f a n o v i c h , E. V., and T r u o n g , T. N., 1996, J. chem . Phys., 104, 2946.

[22] W e s o l o w s k i , T. A., and W a r s h e l , A., 1993, J. phys. Chem ., 97, 8050.

[23] H i r a t a , F., and R o s s k y , P. J., 1981, Chem . Phys. Lett., 83, 329.
[24] H i r a t a , F., R o s s k y , P. J., and P e t t i t t , B. M., 1983, J. chem . Phys., 78, 4133.

[25] L u z h k o v , V., and W a r s h e l , A., 1992, J. comput. Chem ., 13, 199.

[26] M i e r t u s , S., S c r o c c o , E., and T o m a s i , J., 1981, Chem . Phys., 55, 117.
[27] C a m m i , R., and T o m a s i , J., 1994, J. chem. Phys., 100, 7495.

[28] C a m m i , R., and T o m a s i , J., 1994, J. chem. Phys., 101, 3888.

[29] C o s s i , M., T o m a s i , J., and C a m m i , R., 1995, Int. J. quant. Chem ., S29, 695.
[30] D i l l e t , V., R i n a l d i , D., A n g y a n , J. G., and R i v a i l , J. L., 1993, Chem . Phys. Lett., 202,

18.

[31] D i l l e t , V., R i n a l d i , D., and R i v a i l , J. L., 1994, J. phys. Chem ., 98, 5034.
[32] K i r k w o o d , J. G., 1934, J. chem . Phys., 2, 351.

[33] T a n n o r , D. J., M a r t e n , B., M u r p h y , R., F r i e s n e r , R. A., S i t k o f f , D., N i c h o l l s , A.,

R i n g n a l d a , M., G o d d a r d , W. A., and H o n i g , B., 1994, J. Am . chem . Soc., 116, 11 875.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



544 T. N . Truong

[34] C o r t i s , C. M., L a n g l o i s , J.-M., B e a c h y , M. D., and F r i e s n e r , R. A., 1996, J. chem .

Phys., 105, 5472.

[35] K l a m t , A., and S c h u $ u $ r m a n n , G., 1993, J. chem . Soc., Perkin Trans. II, 799.
[36] A n d z e l m , J., K o $ l m e l , C., and K l a m t , A., 1995, J. chem . Phys., 103, 9312.

[37] B a l d r i d g e , K., and K l a m t , A., 1997, J. chem . Phys., 106, 6622.

[38] T r u o n g , T. N., and S t e f a n o v i c h , E. V., 1995, Chem . Phys. Lett., 240, 253.
[39] T r u o n g , T. N., and S t e f a n o v i c h , E. V., 1995, J. chem . Phys., 103, 3709.

[40] H u s t o n , S. E., R o s s k y , P. J., and Z i c h i , D. A., 1989, J. Am . chem . Soc., 111, 5680.

[41] L i m , D., and J o r g e n s e n , W. L., 1996, J. phys. Chem ., 100, 17 490.
[42] R u i z -L o ! p e z , M. F., R i n a l d i , D., and B e r t r a n , J., 1995, J. chem . Phys., 103, 9249.

[43] G a o , J., and X i a , X., 1993, J. Am . chem . Soc., 115, 9667.

[44] B a s i l e v s k y , M. V., C h u d i n o v , G. E., and N a p o l o v , D. V., 1993, J. phys. Chem ., 97, 3270.
[45] G a o , J., 1991, J. Am . chem . Soc., 113, 7796.

[46] A l e m a ! n , C., M a s e r a s , F., L l e d o s , A., D u r a n , M., and B e r t r a ! n , J., 1989, J. phys. org.

Chem ., 2, 611.
[47] T a k a h a s h i , O., S a w a h a t a , H., O g a w a , Y., and K i k u c h i , O., 1997, J. molec. Struct.

(Theochem .), 393, 141.

[48] K i k u c h i , O., S a n o , Y., T a k a h a s h i , O., and M o r i h a s h i , K., 1996, Heteroat. Chem ., 7, 273.
[49] D i l l e t , V., R i n a l d i , D., B e r t r a ! n , J., a n d R i v a i l , J., 1996, J. chem . Phys., 104, 9437.

[50] A g u i l a r , M., B i a n c o , R., M i e r t u s , S., P e r s i c o , M., and T o m a s i , J., 1993, Chem . Phys.,

174, 397.
[51] S a t o , H., and K a t o , S., 1994, J. molec. Struct. (Theochem .), 116, 67.

[52] T r u o n g , T. N., and S t e f a n o v i c h , E. V., 1995, J. phys. Chem ., 99, 14 700.

[53] T r u o n g , T. N., T r u o n g , T.-T. T., and S t e f a n o v i c h , E. V., 1997, J. chem. Phys., 107,
1881.

[54] H o d o s c e k , M., and H a d z i , D., 1989, J. molec. Struct., 198, 461.

[55] K u r z , J. L., 1989, J. Am . chem . Soc., 111, 8631.
[56] T o r t o n d a , F. R., P a s c u a l -A h u i r , J.-L., S i l l a , E., and T u n 4 o ! n , I., 1993, J. phys. Chem .,

97, 11 087.

[57] T o r t o n d a , F. R., P a s c u a l -A h u i r , J.-L., S i l l a , E., and T u n 4 o ! n , I., 1995, J. phys. Chem .,
99, 12 525.

[58] T r u o n g , T. N., N g u y e n , U. N., and S t e f a n o v i c h , E. V., 1996, Int. J. quant. Chem ., 60,

1615.
[59] A s s f e l d , X., S o r d o , J. A., G o n z a l e z , J., R u i z l o p e z , M. F., and S o r d o , T. L., 1993,

J. molec. Struct. (Theochem ), 106, 193.

[60] A s s f e l d , X., R u i z -L o ! p e z , M. F., G o n z a l e z , J., L o ! p e z , R., S o r d o , J. A., and S o r d o ,
T. L., 1994, J. comput. Chem ., 15, 479.

[61] B e r n a r d i , F., P a p p a l a r d o , R. R., R o b b , M. A., and V e n t u r i n i , A., 1995, J. molec.

Struct. (Theochem .), 357, 33.
[62] C o s s i o , F. P., R o a , G., L e c e a , B., and U g a l d e , J. M., 1995, J. Am . chem . Soc., 117, 12 306.

[63] D o m i n g o , L. R., P i c h e r , M. T., A n d r e s , J., M o l i n e r , V., and S a f o n t , V. S., 1996,

Tetrahedron, 52, 10 693.
[64] E s s e f a r , M., E l M o u h t a d i , M., L i o t a r d , D., and A b b o u d , J.-L. M., 1988, J. chem . Soc.,

Perkin Trans . II, 143.

[65] F a n g , D., and F u , X., 1996, Chem . Phys. Lett., 259, 265.
[66] K a r c h e r , T., S i c k i n g , W., S a u e r , J., and S u s t m a n n , R., 1992, Tetrahedron Lett., 33,

8027.

[67] L e c e a , B., A r r i e t a , A., R o a , G., U g a l d e , J. M., and C o s s i o , F. P., 1994, J. Am . chem .
Soc., 116, 9613.

[68] L e c e a , B., A r r i e t a , A., L o p e z , X., U g a l d e , J. M., and C o s s i o , F. P., 1995, J. Am . chem .

Soc., 117, 12 314.
[69] L e c e a , B., A r r a s t i a , I., A r r i e t a , A., R o a , G., L o p e z , X., A r r i o r t u a , M. I., U g a l d e ,

J. M., and C o s s i o , F. P., 1996, J. org. Chem ., 61, 3070.

[70] L o p e z , R., S u a r e z , D., R u i z -L o p e z , M. F., G o n z a l e z , J., S o r d o , J. A., and S o r d o ,
T. L., 1995, J. chem. Soc., chem . Commun., 16, 1677.

[71] R a s t e l l i , A., B a g a t t i , M., and G a n d o l f i , R., 1995, J. Am . chem. Soc., 117, 4965.

[72] R e g u e r o , M., P a p p a l a r d o , R. R., R o b b , M. A., and R e z p a , H. S., 1993, J. chem . Soc.,
Perkin Trans . II, 8, 1499.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Quantum modelling of reactions in solution 545

[73] S p e r l i n g , D., M e h l h o r m , A., R e i s s i g , H. U., and F a b i a n , J., 1996, Liebigs ’ Ann., 1615.

[74] S u s t m a n n , R., and S i c k i n g , W., 1992, Tetrahedron, 48, 10 293.

[75] A n d r e s , J., B o h m , S., M o l i n e r , V., S i l l a , E., and T u n o n , I., 1994, J. phys. Chem ., 98,
6955.

[76] P a r d o , L., O s m a n , R., W e i n s t e i n , H., and R a b i n o w i t z , J. R., 1993, J. Am . chem . Soc.,

115, 8263.
[77] C i e p l a k , A. S., and W i b e r g , K. B., 1992, J. Am . chem . Soc., 114, 9226.

[78] A s s f e l d , X., G a r a p o n , J., R i n a l d i , D., R u i z -L o p e z , M. F., and R i v a i l , J. L., 1996,

J. molec. Struct. (Theochem .), 371, 107.
[79] Y u , H.-A., and K a r p l u s , M., 1990, J. Am . chem. Soc., 112, 5706.

[80] A n d r e ! s , J., B o h m , S., M o l i n e r , V., S i l l a , E., and T u n 4 o ! n , I., 1994, J. phys. Chem ., 98,

6955.
[81] A s s f e l d , X., R u i z -L o p e z , M. F., G a r c i a , J. I., M a y o r a l , J. A., and S a l v a t e l l a , L.,

1995, J. chem . Soc., chem . Commun., 13, 1371.

[82] C a t i v i e l a , C., G a r c i a , J. I., M a y o r a l , J. A., R o y e , A. J., S a l v a t e l l a , A s s f e l d , I. X.,
and R u i z -L o p e z , M. F., 1992, J. phys. org. Chem ., 5, 230.

[83] C a t i v i e l a , C., D i l l e t , V., G a r c i ! a , J. I., M a y o r a l , J. A., R u i z -L o ! p e z , M. F., and

S a l v a t e l l a , L., 1995, J. molec. Struct. (Theochem .), 331, 37.
[84] d e P a s c u a l -T e r e s a , B., G o n z a l e z , J., A s e n s i o , A., and H o u k , K. N., 1995, J. Am. chem .

Soc., 117, 4347.

[85] M c C a r r i c k , M. A., W u , Y. D., and H o u k , K. N., 1993, J. org. Chem ., 58, 3330.
[86] R u i z -L o ! p e z , M. F., A s s f e l d , X., G a r c i ! a , J. I., M a y o r a l , J. A., and S a l v a t e l l a , L., 1993,

J. Am . chem . Soc., 15, 8780.

[87] S a l z n e r , U., B a c h r a c h , S. M., and M u l h e a r n , D. C., 1997, J. comput. Chem ., 18, 198.
[88] S u a ! r e z , D., A s s f e l d , X., G o n z a ! l e z , J., R u i z -L o ! p e z , M. F., S o r d o , T. L., and S o r d o ,

J. A., 1994, J. chem . Soc., chem. Commun., 1683.

[89] N g u y e n , M. T., R a s p o e t , G., and V a n q u i c k e n b o r n e , L. G., 1997, J. Am . chem . Soc., 119,
2552.

[90] M o l i n e r , V., C a s t i l l o , R., S a f r o n t , V. S., O l i v a , M., B o h n , S., T u n o n , I., and A n d r e s ,

J., 1997, J. Am . chem . Soc., 119, 1941.
[91] J o n e s -H e r t z o g , D. K., and J o r g e n s e n , W. L., 1995, J. Am . chem . Soc., 117, 9077.

[92] J e m m i s , E. D., G i j u , K. T., and L e s z c z y n s k i , J., 1997, J. phys. Chem . A, 101, 7389.

[93] H a l l , R. J., D a v i d s o n , M. M., B u r t o n , N. A., and H i l l i e r , I. H., 1995, J. phys. Chem .,
99, 921.

[94] D a v i d s o n , M. M., H i l l i e r , I. H., and V i n c e n t , M. A., 1995, Chem . Phys. Lett., 246, 536.

[95] D a v i d s o n , M. M., H i l l i e r , I. H., H a l l , R. J., and B u r t o n , N. A., 1994, J. Am . chem .
Soc., 116, 9294.

[96] A r n a u d , R., D i l l e t , V., P e l l o u x -L e o n , N., and V a l l e , Y., 1996, J. chem . Soc., Perkin

Trans . II, 2065.
[97] A d a m o , C., and L e l j , F., 1995, Int. J. quant. Chem . 56, 645.

[98] A n d r e s , J. L., L l e d o s , A., and B e r t r a n , J., 1994, Chem . Phys. Lett., 223, 23.

[99] W o n g , M. W., L e u n g -T o u n g , R., and W e n t r u p , C., 1993, J. Am . chem . Soc., 115, 2465.
[100] L e e , D., K i m , C. K., L e e , B., L e e , I., and L e e , B. C., 1997, J. comput. Chem ., 18, 56.

[101] R a u h u t , G., 1996, J. comput. Chem ., 17, 1848.

[102] B a r o n e , V., and A d a m o , C., 1995, J. phys. Chem ., 99, 15 062.
[103] R i v a i l , J. L., and R i n a l d i , D., 1976, Chem . Phys., 18, 233.

[104] I n g o l d , C. K., 1969, Structure and Mechanism in Organic Chemistry, second edition

(Ithaca, New York : Cornell University Press).
[105] H y n e s , J. T., 1985, Theory of Chemical Reaction Dynamics, edited by M. Baer (Boca

Raton, Florida : CRC Press), p. 171.

[106] K r e e v o y , M. M., and T r u h l a r , D. G., 1986, Investigation of Rates and Mechanisms of

Reactions, edited by C. F. Bernasconi (New York : Wiley), p. 13.

[107] S h a i k , S. S., S c h l e g e l , H. B., and W o l f e , S., 1992, Theoretical Aspects of Physical

Organic Chemistry, The S
N

2 Mechanisms (New York : Wiley).
[108] M i n k i n , V. I., S i m k i n , B. Y., and M i n y a e v , R. M., 1990, Quantum Chemistry of Organic

CompoundsÐ Mechanisms of Reactions (Berlin : Springer).

[109] O l m s t e a d , W. N., and B r a u m a n , J. I., 1977, J. Am. chem . Soc., 99, 4219.
[110] A l b e r y , W. J., 1980, A. Rev. phys. Chem ., 31, 227.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



546 Quantum modelling of reactions in solution

[111] C h a n d r a s e k h a r , J., S m i t h , S. F., and J o r g e n s e n , W. L., 1985, J. Am . chem . Soc., 107,

154.

[112] B a s h , P. A., F i e l d , M. J., and K a r p l u s , M., 1987, J. Am . chem. Soc., 109, 8092.
[113] S i n g h , U. C., and K o l l m a n , P. A., 1986, J. comput. Chem ., 7, 718.

[114] M a t h i s , J. R., B i a n c o , R., and H y n e s , J. T., 1994, J. molec. Liquids, 61, 81.

[115] H w a n g , J.-K., K i n g , G., C r e i g h t o n , S., and W a r s h e l , A., 1988, J. Am . chem . Soc., 110,
5297.

[116] O h t a , K., and M o r o k u m a , K., 1985, J. phys. Chem ., 89, 5845.

[117] G a o , J., and X i a , X., 1993, J. Am . chem. Soc., 115, 9667.
[118] I s s a c s , N. S., 1987, Physical Organic Chemistry (New York : Wiley).

[119] S o l a ’ , M., L l e d o ! s , A., D u r a n , M., B e r t r a ! n , J., and A b b o u d , J.-L. M., 1991, J. Am .

chem. Soc., 113, 12873.
[120] H u i s g e n , R., 1977, Accts chem . Res., 10, 117.

[121] H u i s g e n , R., 1980, Pure appl. Chem ., 52, 2283.

[122] T r u o n g , T. N., 1998, J. Phys. Chem ., in the press.
[123] B r e s l o w , R., 1991, Accts chem . Res., 24, 159.

[124] B l a k e , J. F., and J o r g e n s e n , W. L., 1991, J. Am . chem. Soc., 113, 7430.

[125] C r a m e r , C. J., and T r u h l a r , D. G., 1992, J. Am . chem . Soc., 114, 8794.
[126] C r a m e r , C. J., and T r u h l a r , D. G., 1992, J. comput-Aided Molec. Des., 6, 629.

[127] G a j e w s k i , J. J., 1997, Accts chem. Res., 30, 219.

[128] W h i t e , W. N., and W o l f a r t h , E. F., 1970, J. org. Chem ., 35, 2196.
[129] G u e s t , J. M., C r a w , J. S., V i n c e n t , M. A., and H i l l i e r , I. H., 1997, J. chem . Soc.,

Perkin Trans. II, 71.

[130] S e h g a l , A., S h a o , L., and G a o , J., 1995, J. Am. chem . Soc., 117, 11 337.
[131] S e v e r a n c e , D. L., and J o r g e n s e n , W. L., 1992, J. Am . chem . Soc., 114, 10 966.

[132] S t o r e r , J. W., G i e s e n , D. J., H a w k i n s , G. D., L y n c h , G. C., C r a m e r , C. J., T r u h l a r ,

D. G., and L i o t a r d , D. A., 1994, Structure and Reactivity in Aqueous Solution, edited by
C. J. Cramer and D. G. Truhlar (Washington, DC : American Chemical Society), p. 24.

[133] S t e f a n o v i c h , E. V., and T r u o n g , T. N., 1995, Chem. Phys. Lett., 244, 65.

[134] S t e f a n o v i c h , E. V., and T r u o n g , T. N., 1996, J. chem . Phys., 105, 2961.
[135] F l o r i s , F. M., T o m a s i , J., and A h u i r , J. L. P., 1991, J. comput. Chem ., 12, 784.

[136] J o r g e n s e n , W. L., and T i r a d o -R i v e s , J., 1988, J. Am . chem . Soc., 110, 1657.

[137] R i c h a r d s , F. M., 1997, A. Rev. biophys. Bioengng, 6, 151.
[138] P i e r o t t i , R. A., 1976, Chem . Rev., 76, 717.

[139] H u r o n , M. J., and C l a v e r i e , P., 1972, J. phys. Chem ., 76, 2123.

[140] A g u i l a r , M. A., and O l i v a r e s d e l V a l l e , F. J., 1989, Chem . Phys., 138, 327.
[141] F l o r i s , F., and T o m a s i , J., 1989, J. comput. Chem ., 10, 616.

[142] F l o r i s , F. M., T a n i , A., and T o m a s i , J., 1993, Chem . Phys., 169, 11.

[143] F r e c e r , V., M i e r t u s , S., and M a j e k o v a , M., 1991, J. molec. Struct. (Theochem .), 73, 157.
[144] O l i v a r e s d e l V a l l e , F. J., and A g u i l a r , M. A., 1993, J. molec. Struct. (Theochem .), 99,

25.

[145] R i n a l d i , D., C a b r a l , B. J. C., and R i v a i l , J. L., 1986, Chem . Phys. Lett., 125, 495.
[146] C a m m i , R., and T o m a s i , J., 1995, J. comput. Chem ., 16, 1449.

[147] K l a m t , A., and J o n a s , V., 1996, J. chem . Phys., 105, 9972.

[148] L e e , B., and R i c h a r d s , F. M., 1971, J. molec. Biol., 55, 379.
[149] P a s c u a l -A h u i r , J. L., S i l l a , E., and T u n 4 o n , I., 1994, J. comput. Chem ., 15, 1127.

[150] W o o n , D. E., and D u n n i n g J r , T. H., 1993, J. phys. Chem ., 98, 1358.

[151] T r u o n g , T. N., 1995, J. chem . Phys., 102, 5335.
[152] D u n c a n , W. T., and T r u o n g , T. N., 1995, J. chem . Phys., 103, 9642.

[153] T r u o n g , T. N., and D u n c a n , W. T., 1994, J. chem . Phys., 101, 7408.

[154] O k a m o t o , K., F u k u i , S., and S h i n g u , H., 1967, Bull. chem. Soc. Japan, 40, 1920.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1


